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Abstract  

Among healthcare researchers, there is increasing debate over how best to assess and ensure the 

fairness of algorithms used for clinical decision support and population health—particularly 

concerning potential racial bias. Here we first distill concerns over the fairness of healthcare 

algorithms into four broad categories: (1) the explicit inclusion (or, conversely, the exclusion) of 

race and ethnicity in algorithms, (2) unequal algorithm decision rates across groups, (3) unequal 

error rates across groups, and (4) potential bias in the target variable used in prediction. With this 

taxonomy, we critically examine seven prominent and controversial healthcare algorithms. We 

show that popular approaches that aim to improve the fairness of healthcare algorithms can in 

fact worsen outcomes for individuals across all racial and ethnic groups. We conclude by 

offering an alternative, consequentialist framework for algorithm design that mitigates these 

harms by instead foregrounding outcomes and clarifying tradeoffs in the pursuit of equitable 

decision making. 

 

I.   INTRODUCTION 

Over the past two decades, organizations across sectors have developed and deployed 

algorithms to enhance decision-making. In healthcare, algorithms are increasingly used for 

guiding high-stakes decisions, including disease screening and treatment, as well as for 

allocating limited healthcare resources. Algorithmic decision-making promises to increase 

efficiency and reduce subjectivity, but researchers and clinicians have raised concerns that 

healthcare algorithms exacerbate inequities, particularly relating to race and ethnicity. 

In this article, we survey a wide range of prominent healthcare algorithms used for 

population health and individual decision support, all of which have been subject of extensive 

debates over their fairness. While “fairness” itself is a contested term, we use it here to describe 

an algorithm’s tendency to enhance rather than diminish the equity of decisions. The clinical 

algorithms we consider span several medical fields, including oncology, obstetrics, cardiology, 

and nephrology, and concern both shared decision-making and the allocation of limited 

resources. Using these algorithms as case studies, we distill the myriad fairness concerns that 

have been raised for healthcare algorithms into four categories: (1) the inclusion (or, conversely, 

the exclusion) of race and ethnicity in algorithm inputs, (2) unequal algorithm decision rates 
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across groups, (3) unequal error rates across groups, and (4) potential bias in the target variable 

used in prediction. In Table 1, we situate each of the algorithms we consider into this structure. 

We briefly summarize these four broad concerns before discussing them in depth in 

subsequent sections. The use of race and ethnicity in health algorithms is heavily debated (62-64, 

18-20, 57, 69). Advocates for race-aware algorithms argue that explicitly considering race 

improves the accuracy of decisions for all groups (38, 39, 42, 1, 69). Conversely, proponents of 

race-unaware algorithms—commonly called “race-blind” algorithms—argue that using race 

perpetuates pernicious racial attitudes and exacerbates racial and ethnic inequities (23, 62-64, 33, 

57). In addition to scrutinizing an algorithm’s inputs, researchers have sought to assess the 

fairness of algorithms by examining differences in decision and error rates across racial and 

ethnic groups. For example, in the context of lung cancer, researchers have noted that common 

algorithms recommend different screening rates across racial groups and also exhibit racial gaps 

in missed referrals for screening (i.e., unequal error rates) (2, 49). As a result, many advocate for 

designing algorithms to equalize decision and error rates across groups. That strategy seeks to 

ensure that the benefits and burdens of algorithmic decision-making are shared equally across 

groups—though also tacitly ignores differences in need and individual preferences. Finally, there 

is concern over the mismeasurement of target variables used for prediction in healthcare 

algorithms, a problem also known as “label bias” (68). For example, algorithms trained to predict 

healthcare expenditure as a proxy of healthcare need may under-allocate healthcare resources to 

disadvantaged groups due to racial disparities in healthcare access and expenditure (48).  

Many of the fairness concerns raised for healthcare algorithms focus on how an algorithm 

makes decisions—for example, does it use race, or does it equalize decisions across groups? That 

focus stands in contrast to a perspective that foregrounds outcomes, an approach to ethical 

decision-making often called consequentialism. From a consequentialist perspective, what 

renders an algorithm fair is its impact on individuals and society, not its set of inputs or some 

particular statistical summary. Consequentialism suggests an algorithm be designed to maximize 

aggregate “utility,” the overall desirability or benefit that comes from a specific decision or 

policy. In the healthcare context, utility might encapsulate quantitative measures such as life-

years gained, or improvement in quality of life, as well as the monetary and non-monetary costs 

associated with unnecessary testing.  
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Table 1. Taxonomy of healthcare algorithms and their fairness concerns. We situate each of 

the seven algorithms we consider in this review within our taxonomy of the four main fairness 

concerns for clinical and population health algorithms. LYFS refers to life-years from screening, 

VBAC refers to vaginal birth after cesarean, CVD refers to cardiovascular disease, and eGFR 

refers to estimated glomerular filtration rate.   

 

 Use of race Unequal 

decision 

rates 

Unequal 

error rates 

Label bias 

 

 

 

 

 

Non-resource 

constrained 

Lung cancer 

incidence 

risk model 

 ✓ ✓  

Lung cancer 

LYFS model 
✓ ✓ ✓ ✓ 

VBAC 

success 

calculator 

✓ ✓   

CVD 

incidence 

risk model 

✓ ✓  ✓ 

 

 

 

 

 

Resource 

constrained 

CVD 

hospital 

mortality 

risk model 

 ✓   

Kidney 

function 

(eGFR) 

equation 

✓ ✓   

Healthcare 

need 

prediction 

models 

   ✓ 
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In this article, we argue that the dominant approach to designing fair healthcare 

algorithms—one that, for example, seeks to equalize decision or error rates—can often harm the 

groups it seeks to protect. Instead, we advocate for adopting a consequentialist perspective to 

algorithm design. The remainder of our article is structured as follows. Beginning with an 

extended case study of risk algorithms for lung cancer, we unpack the four broad categories of 

fairness concerns for healthcare algorithms outlined above. We then expand our discussion by 

reviewing several more prominent healthcare algorithms that have been the subject of recent 

fairness debates. Finally, we conclude with an example that illustrates the value of a 

consequentialist framework, offering a path forward for designing equitable algorithms in 

healthcare and beyond. 

 

II.   FAIRNESS CONCERNS IN LUNG CANCER SCREENING 

In the United States, lung cancer is the third most commonly diagnosed cancer and is the 

leading cause of cancer-related death (8). Black men in the United States have higher rates of 

lung cancer incidence and mortality than men in any other racial or ethnic group (55, 56). 

Researchers have attributed these disparities to differences in social determinants of health—

such as access to healthcare and exposure to carcinogens—that are correlated with race and 

ethnicity, with race and ethnicity acting as surrogates for these factors in clinical models for lung 

cancer (59).    

Screening in the form of low-dose computed tomography (CT) scans remains the most 

effective method for diagnosing and informing treatment for lung cancer. However, screening 

comes with both monetary and non-monetary costs, such as the direct cost of the scan, taking 

time away from work, and psychological stress associated with screening and false positives. 

Given these tradeoffs, the United States Preventive Services Task Force (USPSTF) only 

recommends annual screening for high-risk individuals: adults aged 50 to 80 years who have a 

20 pack-year smoking history and currently smoke or have quit within the past 15 years (35). 

Researchers have also developed risk models in an attempt to produce more personalized 

estimates of risk (10, 31, 61). To identify high-risk individuals, clinicians use thresholds on these 

risk scores to inform recommendations for follow-up screening.  

The algorithms used to produce these risk scores are the subject of extensive debate, 

particularly with respect to their inclusion of race (37), and how the use of race interacts with the 
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choice of target variable, tying into discussions on label bias (59). Further, the fairness of these 

risk models has been characterized in terms of differences in decision and error rates across 

demographic groups (2, 49). Using lung cancer as an extended case study, we discuss in more 

depth the four categories of fairness concerns listed above, and offer empirical evidence on the 

consequences of employing different approaches to fairness popular in the literature. 

 

A.   THE USE OF RACE 

 In an effort to develop the most statistically accurate models, some researchers have 

recommended the use of race-aware algorithms that account for racial and ethnic disparities in 

lung cancer incidence and mortality (37, 10, 31, 61). Medical societies, such as the American 

Thoracic Society, have also recommended augmenting the USPSTF guidelines with race-aware 

predictive models to guide decisions, in part to identify more high-risk racial minorities for 

screening (52). However, adjustments for race in clinical algorithms are widely debated across 

numerous disease contexts, as well as in medicine more generally (62-64, 30, 23, 57, 69). Many 

researchers have advocated for eliminating race and ethnicity in similar risk estimation tools due 

to concerns that including race and ethnicity reifies race as biologically meaningful and may in 

turn result in inappropriately racialized medical treatment (62-64, 57).  

 

B.   UNEQUAL DECISION RATES ACROSS GROUPS 

 Researchers have sought to evaluate the fairness of lung cancer risk models by comparing 

screening recommendation rates across groups. For example, Landy et al. (37) propose a 

(necessarily) race-aware model that ensures screening rates for racial and ethnic minorities are 

equal to or greater than that of White individuals. While perhaps intuitively appealing, equalizing 

such decision rates can harm members of all groups. To see this, we note that in shared decision-

making contexts such as this, the decision threshold—in this case, the screening threshold—is set 

at the point of indifference, where the costs of the decision are expected to equal the benefits 

(50). As a result, individuals with true risk above the decision threshold are expected to have 

positive utility from being screened. Conversely, individuals with true risk below the threshold 

are expected to have negative utility from being screened (e.g., from incurring the costs of 

screening while expecting little benefit). However, equalizing decision rates does not consider an 
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individual’s utility for being screened, and may thus impose utility losses from over- or under-

screening individuals.  

To see how equalizing decision rates can produce these undesired consequences, consider 

the left plot of Figure 1, which shows distributions of lung cancer risk as estimated by the Lung 

Cancer Risk Assessment Tool (LCRAT), disaggregated by race and ethnicity, using data from 

the National Lung Screening Trial (NLST) (46). (Figure 1 mirrors analyses performed by 

Chohlas-Wood et al. (11)). In this population, 62% of White individuals have a risk score above 

the recommended screening threshold of 2% (31, 32)—indicated by the vertical black line— 

35% of Asian individuals, 36% of Hispanic individuals, and 74% of Black patients are also 

above the threshold. As evident in the plot, these differences in decision rates arise primarily due 

to differences in the group-level distributions of risk.  

 

Figure 1. The distribution of lung cancer risk for all individuals and individuals with lung 

cancer. Estimates of risk were generated using the lung cancer risk assessment tool (LCRAT). 

The dashed vertical lines correspond to screening thresholds that equalize decision rates across 

groups (left) and false negative rates across groups (right). 

 

 

Now consider a policy that sets group-specific thresholds on risk so that Asian, Hispanic 

and Black individuals are recommended for screening at the same rate as White individuals 

(62%). Under this approach, we would screen Asian and Hispanic individuals with risk above 

1.2%, which includes many relatively low-risk individuals for whom we expect screening to 

yield negative utility. Examples of sources of negative utility from screening include pain and 
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complications from invasive biopsies or surgeries. Yet we would only screen Black individuals 

who have relatively high risk of lung cancer, above approximately 2.6%, failing to screen many 

Black individuals for whom we expect screening to have net benefits, also resulting in lost 

utility. By equalizing screening rates across groups, we would in fact harm Asian, Hispanic, and 

Black individuals by failing to screen some individuals who are expected to benefit from 

screening and screening others for whom the costs are expected to outweigh the benefits. 

 

C.   UNEQUAL ERROR RATES ACROSS GROUPS 

 Other work has sought to assess the fairness of the USPSTF screening criteria in terms of 

group-level sensitivity1 (2, 49).  This analysis amounts to a comparison of false negative rates 

(FNR), given that FNR is one minus sensitivity. Those studies have shown that the USPSTF 

criteria fail to recommend Black individuals with lung cancer for screening at higher rates than 

White individuals (2, 49). Consequently, some researchers recommend lowering the USPSTF 

criteria on smoking history to increase screening among Black individuals with lung cancer (2, 

49). This argument, however, similarly fails to account for differences in risk distributions across 

groups.  

To see how equalizing error rates—like equalizing decision rates—can produce undesired 

consequences, consider the right plot of Figure 1. We depict distributions of estimated lung 

cancer risk (as estimated by LCRAT) among people who have lung cancer. Under a policy of 

screening patients above the recommended 2% threshold (indicated by the vertical black line), 

Hispanic individuals have the highest false negative rate at 44%, Asian individuals have an FNR 

of 28%, White individuals have an FNR of 13%, and Black individuals have the lowest FNR at 

10%. To equalize false negative rates across groups (while leaving risk estimates unchanged), we 

must set group-specific screening thresholds. For example, if we screen Hispanic individuals 

above a 1.1% threshold, screen Asian individuals above a 1.3% threshold, screen White 

individuals above a 2.1% threshold, and screen Black individuals above a 2.3% threshold, then 

all groups would have a false negative rate of approximately 15%. However, such a policy would 

mean that we recommend screening for some relatively low-risk Hispanic and Asian individuals, 

 
1 The sensitivity equals TP/(TP + FN), where TP is the number of true positives, and FN is the number of false 

negatives. 



9 

resulting in expected utility losses for some members of these groups. In general, equalizing 

error rates across groups has the potential to harm members of all racial and ethnic groups. 

 

D.   THE RISK OF LABEL BIAS 

Not all lung cancer risk models are designed to predict the same outcome. The LCRAT 

and PLCOm2012 models predict lung cancer incidence, whereas the life-years gained from 

screening-computed tomography (LYFS-CT) model predicts expected benefit from screening 

(31, 10, 61). However, researchers have expressed concern that models—particularly race-aware 

models—that predict life-years gained from screening are susceptible to label bias due to 

differences in life expectancy across racial and ethnic groups (59). Black individuals have lower 

average life expectancy than White individuals, with researchers attributing these gaps to 

differences in social determinants of health, such as income and geography (54). A model that 

predicts life-years gained from screening may therefore risk predicting patterns in social 

determinants of health as opposed to absolute benefits of screening.  

 

As we have seen in the case of lung cancer, fairness concerns in algorithmic decision-

making are nuanced, and divorcing measures of fairness from outcomes may produce unintended 

and undesired consequences. These issues are not isolated to lung cancer screening but are 

pervasive across algorithms used in healthcare, which we explore further in the following 

sections. 

 

III.   CASE STUDIES ON THE FAIRNESS OF HEALTHCARE 

ALGORITHMS 

We next examine several prominent—and, in some cases, controversial—healthcare 

algorithms used for risk estimation and resource allocation. For each algorithm, we briefly 

review its genesis and intended applications, and discuss the relevant fairness concerns they 

invoke. We first consider three risk scores used in obstetrics and cardiology. As shown in Table 

1, two of these risk scores are used in a shared decision-making context, and one is used in a 

resource-constrained setting. We then discuss two algorithms used to allocate limited resources 

in nephrology and care management. 

 



10 

A.   RISK ESTIMATION 

A.1   VAGINAL BIRTH AFTER CESAREAN (VBAC) 

Among pregnant women who previously have had cesarean sections (C-sections), there 

are trade-offs to a trial of labor (or TOLAC, “trial of labor after cesarean”). Vaginal births have 

well-established advantages over repeat C-sections, including shorter recovery times, lower risks 

of infection and hemorrhage, and better outcomes in future pregnancies (15). However, for some 

women, these benefits may not outweigh the risks. Vaginal birth after cesarean (VBAC) success 

calculators help healthcare providers and pregnant women weigh this decision. The first VBAC 

calculator—called the Grobman calculator—was developed to predict the likelihood of a 

successful VBAC by considering factors such as age, BMI, any prior vaginal delivery, previous 

VBAC, reason for prior cesarean, and race and ethnicity (36, 26, 27).  

VBAC calculators have been criticized for their use of race, and the resulting disparities 

in TOLAC recommendation rates across racial and ethnic groups. (63, 64). The Grobman 

calculator produces systematically higher VBAC success probabilities for White women than for 

Black or Hispanic women, consistent with studies showing that Black and Hispanic women are 

less likely to achieve successful VBAC than White women (43). These racial disparities in 

estimated VBAC success rates likely exist because, conditional on other covariates, race and 

ethnicity capture a mix of unobserved clinical and non-clinical factors, such as income, 

education or healthcare access. 

Researchers have hypothesized that using race-aware VBAC calculators, like the 

Grobman calculator, led to differences in how women of different racial and ethnic groups were 

counseled by their doctors to attempt TOLAC (63, 64). Fairness critiques of VBAC calculators 

have predominantly centered on unequal recommendations rates to attempt TOLAC across 

groups. Akin to our lung cancer example, equalizing VBAC recommendation rates may similarly 

require using race-specific thresholds on VBAC success probability, due to possible differences 

in risk distributions across groups. This approach, however, would likely result in not 

recommending TOLAC for some women above the recommended threshold and recommending 

TOLAC for some women below that threshold—a policy that may impose utility losses for 

women across all groups. These utility losses would stem from both women who would have 

benefited from attempting TOLAC but were not counseled to do so, as well as from women who 
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were inappropriately recommended TOLAC and suffered avoidable complications during 

delivery.  

 Grobman et al. (28, 29) have since developed a race-unaware VBAC calculator, which 

exhibits comparable overall accuracy to the previous race-aware version, though the authors did 

not report accuracy or recommendation rates across racial and ethnic groups (6, 27, 29). As 

researchers continue to evaluate the fairness of VBAC calculators and other decision aids, we 

believe they should move away from scrutinizing differential recommendation rates across 

groups, an approach that fundamentally ignores potential differences in underlying risk 

distributions and which may result in utility losses for members of all groups.  

 

A.2   CARDIOVASCULAR DISEASE 

Clinical algorithms are commonly used to estimate cardiovascular risks, but they have 

been criticized for explicitly considering race, exhibiting unequal decision rates across groups, 

and being impacted by label bias. Cardiovascular disease encompasses a broad range of 

conditions and events such as coronary heart disease (CHD), coronary heart failure (CHF), heart 

attack, and stroke. To reduce CVD-related morbidity and mortality, clinicians have long 

prescribed statins, a class of cholesterol-lowering drugs, to prevent CVD events. Risk calculators 

for CVD were developed to help physicians determine when to recommend statins as a 

prophylactic.  

The Framingham Risk Score (FRS), a race-unaware model trained to predict incidence of 

CHD, was among the first such risk estimation algorithms (66). Studies found that the FRS 

performed reasonably well at predicting CHD events in Black individuals, but concerns emerged 

over the limited scope of the FRS in only predicting CHD and not other CVD events, like CHF 

(17), especially because Black individuals exhibited higher rates of CHF than other racial and 

ethnic groups (5, 3). Racial and ethnic differences in CHF incidence rates may lead to label bias 

when CHD events are used as a proxy for general cardiovascular risks. To address this concern, 

researchers subsequently developed an expanded (but still race-unaware) CVD risk model that 

additionally predicted risk of stroke, peripheral artery disease, and heart failure (16).  

Persistent racial and ethnic disparities in incidence rates across these events motivated the 

development of a race-aware CVD model: the pooled cohort equations (PCE), also known as the 

American College of Cardiology/American Heart Association (ACC/AHA) risk calculator (24). 
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The PCE outperformed other risk scores at predicting initial ASCVD events among Black 

individuals, as well as others (24, 25). However, like earlier risk models, the PCE failed to 

include CHF in its set of considered events, again raising concerns of label bias (7). In response, 

the AHA released the PREVENT equations for predicting risk of CVD and CVD subtypes, 

including CHF (34). Notably, the PREVENT equations are also race-unaware, due to a previous 

decision to exclude race as a predictor (33). The model instead includes a zip-code level social 

deprivation index, which helps account for CVD risk factors that are likely correlated with race 

and ethnicity (33).  

The authors of PREVENT report the equations are suitably calibrated for Black 

individuals, even without including race or ethnicity—though some have questioned the decision 

to exclude race and ethnicity from the model. Diao et al. (20) characterized the expected changes 

in statin and antihypertensive therapy eligibility from the switch to the race-unaware PREVENT 

equations, finding that their use would decrease eligibility for statin and antihypertensive therapy 

for approximately 17 million U.S. adults and that these changes would affect a greater proportion 

of Black adults than White adults. It is, however, possible that the PREVENT equations yield 

more clinically appropriate decisions, as the PCE have been found to overestimate CVD risks for 

members of all racial and ethnic groups—a pattern researchers have attributed to changes in the 

prevalence of risk factors over time (such as smoking), and advances in care and prevention (44, 

29). Further, those whose treatment recommendations change would likely have cardiovascular 

risks near the decision threshold, meaning they might not have benefitted substantially from 

treatment (14). Without explicitly considering utility (e.g., in terms of quality-adjusted life-

years), it is hard to fully assess the impact of excluding race and ethnicity from the model . 

While PREVENT excludes race and ethnicity, other cardiovascular risk models are still 

race-aware, such as the AHA Get with the Guidelines–Heart Failure Risk Score, drawing debate. 

That score informs triage decisions on whether to admit patients to intensive and specialty care, 

which are often limited resources in many hospitals (58). The model was designed to predict risk 

of in-hospital mortality using data from a cohort of patients hospitalized with heart failure (51). 

In the training data, in-hospital mortality was lower for Black patients, counter to expectations 

(51). One possible explanation for this pattern relates to racial disparities in access to cardiology 

care. Past work has found that one of the strongest predictors of admission to the cardiology 

service is whether a patient was previously seen by an outpatient cardiologist at the hospital—
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and there were significant racial and ethnic disparities in the proportion of patients who had seen 

a cardiologist within the past year (67, 22). Because of those disparities, Black patients admitted 

to intensive care might have had better access to healthcare and lower risk of mortality as a 

result. 

Due to the lower estimated risks for Black patients, researchers have raised concerns that 

the AHA Get with the Guidelines–Heart Failure Risk Score may misdirect intensive care away 

from Black patients (63). But, as discussed previously, decision rate-based criticisms of model 

fairness ignore potential differences in risk across groups. It may in reality be the case that non-

Black patients face higher risks in this setting, and would be better served by the additional care. 

We would, however, caution against using this risk score in settings where the patient population 

differs substantially from the population used to train the score—especially if those differences 

are correlated with race or ethnicity. For example, in safety net hospitals, the score might under-

predict mortality risk for Black individuals, since those patients might have higher risks than the 

relatively healthy Black individuals in the training data. 

 

B.   RESOURCE ALLOCATION 

B.1   KIDNEY TRANSPLANTS 

Like algorithms for cardiovascular disease, those for kidney disease are both widespread 

and controversial, having been criticized for their use of race and for exhibiting unequal decision 

rates across groups (63). In the United States, resources for kidney transplantation are highly 

constrained. In 2021, the average wait time for a deceased donor kidney was five years, and 

more than half of listed transplant candidates were expected to die or be removed from the list 

before receiving a transplant (65). In an attempt to make the best use of the constrained supply of 

donor kidneys, researchers and clinicians have turned to algorithms to estimate a patient’s need 

for transplant. Patients are typically recommended for transplants based on estimates of their 

kidney function, as measured by their glomerular filtration rate (GFR). Given challenges with 

measuring GFR directly, GFR has traditionally been estimated (eGFR) using an algorithm based 

on factors like age, sex, race, body size (usually weight or surface area), and serum creatinine 

(13, 60). In addition to resource constrained kidney allocation, eGFR equations have also been 

used to make non-resource constrained chronic kidney disease diagnoses and recommendations 

for drug treatments or other therapies (18).  
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Early eGFR equations—such as the Modification of Diet in Renal Disease (MDRD) 

Study equation and the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) 

equation—used race to estimate GFR (39-41). All else being equal, these equations estimated 

higher GFR for Black individuals, meaning better kidney function. Race-aware eGFR equations 

drew concerns that they made Black patients appear healthier than they were in reality (63). As a 

result, many hospitals began using ad hoc race-unaware estimates of kidney function by 

reporting the “White/other” eGFR prediction for all patients (18). This strategy was found to 

slightly increase chronic kidney disease diagnoses among Black adults (18).  

This critique of race-aware eGFR equations and the corresponding policy response mirror 

calls to equalize decision rates across groups. However, as discussed above, equalizing decision 

rates fails to allow for group differences and it risks harming members of all groups. Indeed, 

race-unaware eGFR values typically under-estimate GFR for Black individuals (30)—the race 

adjustment in the original equations was included precisely to ensure estimates were calibrated 

across groups. Consequently, the race-unaware estimates make Black patients appear less 

healthy than they likely are in reality. That pattern may have led to inappropriate diagnoses, 

potentially resulting in net harm to Black patients. Researchers have since revised the CKD-EPI 

equation to replace race with cystatin C as a predictor of eGFR, leading to race-unaware 

estimates that are approximately calibrated (30). 

Race-aware eGFR equations have been similarly criticized for deprioritizing Black 

patients for kidney transplantation and specialist care (63)—since they estimate higher kidney 

function for Black individuals compared to otherwise similar White individuals. However, as 

discussed above, the race-aware equations produce largely accurate estimates of GFR for both 

Black and non-Black patients. Policymakers may well prefer to enforce some degree of parity in 

kidney allocation rates, even if that means prioritizing a healthier Black patient over a less 

healthy White patient. But we believe that these difficult tradeoffs should be confronted directly 

(12). Seeking to increase eligibility for kidney transplants for Black individuals by using an 

eGFR equation that underestimates their kidney function risks other adverse consequences in the 

form of over-treatment. 
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B.2   HEALTHCARE COSTS AS A PROXY OF NEED 

Healthcare providers in the United States offer specialty care management programs to 

improve the care of high-risk patients with complex health needs. These programs aim to help 

individuals better manage their health by offering additional support from teams of dedicated 

nurses, social workers, and community health workers. However, these programs are expensive 

and healthcare systems consequently use algorithms to identify patients for whom the benefits 

justify the additional costs (4). A common strategy is to predict patients’ future medical 

expenses, and then direct specialty care management to those expected to incur the largest costs 

(48). 

However, past work has demonstrated that algorithms trained to predict healthcare costs 

can fail to allocate resources to high-need racial minorities. Obermeyer et al. (48) evaluated the 

fairness of a commercial algorithm widely used by healthcare systems to guide patient referrals 

to specialty care programs. The algorithm was trained to predict future costs—as a proxy for 

complex healthcare needs—based on insurance claims (e.g., diagnoses, procedures, medications) 

made by an individual in the prior year. The researchers found that the algorithm’s generated risk 

scores were well-calibrated across race groups for predicting healthcare costs. Conditional on 

risk score, both Black and White individuals had approximately the same costs in the following 

year. However, the researchers found that the algorithm was poorly calibrated for predicting 

realized health. Conditional on risk score, Black patients had significantly more illness burden 

than White patients. For example, at the 97th percentile of risk—the threshold for allocating 

resources—Black patients had 26% more chronic illnesses than White patients. Due to this 

miscalibration, resources were diverted away from high-need Black patients to healthier White 

patients. 

This example illustrates the problem of label bias. Healthcare costs are a poor proxy of 

healthcare needs given disparities in healthcare access and Medicaid enrollment that are 

correlated with race. Past work has shown that, conditional on need, healthcare spending is lower 

for Black individuals than for White individuals (47). Consequently, accurate prediction of 

healthcare costs necessarily leads to racially biased allocation of healthcare resources. 

Obermeyer et al. (48) estimated that changing the target of prediction to an index variable that 

incorporates health alongside cost prediction would lead to more resources being allocated to 
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Black patients. This result suggests that algorithmic label bias, at least in some circumstances, is 

both fixable and preventable by thoughtfully selecting prediction targets.  

 

IV.   TOWARDS CONSEQUENTIALIST ALGORITHM DESIGN 

The algorithm case studies in the previous sections reveal problems with popular 

approaches to fairness, which often fail to consider the impact of decisions. These issues 

highlight the need for a design approach that foregrounds the consequences of an algorithm’s 

use—a challenge we take on here. To guide our discussion, we consider risk models for type 2 

diabetes. Researchers have proposed using race-based models for estimating diabetes risk in an 

effort to address known racial disparities in diabetes diagnoses (1). Current guidelines 

recommend using a 1.5% threshold on estimated risk for recommending follow-up screening in 

the form of a blood test (1). Diabetes screening is not a resource constrained practice, and so, in 

line with our discussion above, we do not evaluate potential differences in decision rates (or error 

rates) across groups, as they tell us little about the fairness of an algorithm. Rather, we address 

the other two fairness concerns considered in this article: label bias and the inclusion (or 

exclusion) of race and ethnicity. Using a consequentialist framework, we show how to arbitrate 

between race-aware and race-unaware risk models, following Coots et al. (14).  

For our analysis, we use data from the National Health and Nutrition Examination Survey 

(NHANES) (four cycles from 2011 to 2018) (9). We restricted our sample to approximately 

18,000 patients who were not pregnant, were 18–70 years old, and had a body mass index (BMI) 

between 18.5 kg/m2 and 50.0 kg/m2. Using this data, we trained two linear diabetes risk models 

based on age and BMI, and which differed only in their inclusion of race and ethnicity as a 

predictive variable. This example is for illustrative purposes only and we caution against using 

these models to guide clinical decisions. 

 

A.   SELECTING APPROPRIATE PREDICTION TARGETS 

When designing or evaluating a model, it is imperative to scrutinize the prediction target 

for label bias. Researchers should be careful to consider the ways in which the proposed label 

may mismeasure the true outcome through systemic mechanisms of inequality, such as 

inequitable healthcare access. In our diabetes example, the label used to train the risk models was 

constructed by combining the results of a blood test administered by NHANES with the response 
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to a question on whether the respondent had ever been diagnosed with diabetes by a doctor—and 

so the label likely accurately captures disease status, the true outcome of interest. If, however, 

our label were only constructed on the individual’s response to the diagnosis question, our 

diabetes risk models would more closely predict diabetes diagnoses, as opposed to diabetes 

incidence. That misalignment between label and outcome could result in underestimating 

diabetes risk in groups that have less access to healthcare.  

 

B.   FOREGROUNDING UTILITY 

One of the major shortcomings of common algorithmic fairness arguments is that they do 

not consider individual utilities. In particular, many have advocated for using specific risk 

algorithms on the grounds that they increase decision rates (often for screening or treatment) for 

racial and ethnic minority groups (37, 18). Yet, these arguments often do not consider expected 

changes in utility from these changed decisions, and generally overlook the possibility that 

increasing decision rates can lead to utility losses for members of all groups—as we 

demonstrated with our lung cancer example. A consequentialist approach to algorithm design 

instead foregrounds individual utilities in fairness evaluations.  

We first examine the accuracy of race-unaware risk models. In the top left plot of Figure 

2, we visualize the estimated risk from a race-unaware model for diabetes against the observed 

rates of diabetes across racial and ethnic groups. This plot reveals discrepancies between the 

model predictions and true diabetes incidence for all groups. This miscalibration would 

consequently lead the model to fail to recommend screening for some high-risk Asian 

individuals—whose risk is underestimated by the model—and inappropriately recommend 

screening for some low-risk White individuals—whose risk is overestimated by the model. In 

both cases, the miscalibration would impose net costs on members of both groups from 

suboptimal screening recommendations. Past work has suggested using race-aware risk models 

to correct miscalibration across groups and obtain more accurate predictions (1). However, that 

work has stopped short of considering not just differences in accuracy, but differences in utility 

between race-aware and race-unaware models. 

To compare the utility of race-aware versus race-unaware models, we follow Coots et al. 

(14) and first construct a simplified utility function to aid our comparison of risk models. Our 

utility function assumes a constant cost of screening and a constant benefit of correctly detecting  
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Figure 2. A consequentialist approach to the design of a diabetes risk prediction model 

In line with analyses in Coots et al. (14), (top left) estimated risk from a race-unaware model for 

diabetes against the observed rates of diabetes across racial and ethnic groups. The vertical line 

corresponds to the recommended diabetes risk threshold of 1.5%, above which the typical 

patient can expect to benefit from a screening. The diagonal dashed lines represent hypothetical 

risk scores that are perfectly calibrated to empirical diabetes rates; (top right); scatter plots 

showing race-unaware risk plotted against race-aware risk for each individual in the data. 

Individuals in the shaded regions receive the same recommendation under both models; (bottom 

left) the relative gain in utility from the use of race-aware predictions to make screening 

recommendations across racial and ethnic groups; (bottom right) the fraction of individuals with 

different recommendations under race-unaware and race-aware models. 
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diabetes. (For further detail on the utility function, see Coots et al. (14).) Applying this utility 

function to the decisions produced under a race-aware and race-unaware model, we find that the 

relative gain in utility from using a race-aware model is smaller than expected in light of the 

substantial improvements in accuracy offered by the race-aware model over the race-unaware 

model. Relative to a baseline policy of no screening, we estimate that the race-aware model 

would improve overall utility by 0.2% over the race-unaware model. The lower left panel of 

Figure 2 shows that gains are similarly small across race groups. Our simplified utility function 

is for illustrative purposes only, to estimate the magnitude of the expected benefits, and is not 

intended to capture all the complex clinical considerations.  

The modest utility gains stem from two factors. First, the vast majority of individuals 

(94%) would receive the same screening recommendation under both the race-aware and race-

unaware models. In the top right plot of Figure 2, we plot the race-aware risk estimate for an 

individual against their race-unaware risk estimate. The dots in the shaded regions of the plot 

correspond to individuals for whom both models produce the same recommendation. In the 

lower right plot of Figure 2, we show the fraction of individuals with different decisions under 

each model by race and ethnicity. The second factor driving this result is that those individuals 

whose decisions do change are typically close to the decision threshold, and therefore accrue 

relatively small utility gains from the use of a race-aware model. In other words, the small subset 

of individuals with changed decisions should be largely ambivalent to being screened. 

The race-unaware model is starkly miscalibrated but results in smaller than expected 

utility losses relative to the race-aware model. By foregrounding utility, our analysis helps clarify 

the expected benefits from using a race-aware model. However, the costs of using race—from 

risk of stigmatization or reinforcing pernicious attitudes on biological determinism, for 

example—remain an open question. Ultimately, these costs must be weighed against the 

estimated benefits in selecting the most appropriate model for decision-making.  

 

IV.   CONCLUSION 

As algorithms are increasingly used to guide healthcare decisions, discussions around 

algorithmic fairness have come to the forefront, with racial equity being a particular focus of 

attention. By critically examining contemporary debates, we have argued for reframing what it 

means for an algorithm to be fair. Past fairness approaches—grounded in narrow summary 
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statistics, like decision rates and error rates—fail to anticipate the outcomes produced by 

algorithms, thereby risking unintended harm, including to those in racial and ethnic minority 

groups. With a consequentialist approach to algorithm design, we advocate for explicitly 

considering the utility of decisions produced by candidate algorithms to better understand the 

impact of design choices. This is no easy task. A consequentialist approach requires defining an 

appropriate utility function—a complex assignment that may also require aligning differing 

values across stakeholders. This challenge has led some scholars to critique consequentialist 

approaches to policy (53). But we believe that in many cases of practical importance, it is both 

feasible and useful to articulate one’s values, estimate the impacts of different algorithms, and 

confront the resulting trade-offs. We hope that our discussion helps researchers, clinicians, and 

policymakers better understand the common threads underlying ongoing debates, and illuminates 

a path forward for designing more equitable healthcare algorithms. 

 

DATA AND CODE AVAILABILITY 

Data and code to reproduce our analysis are available at: https://github.com/madisoncoots/racial- 

bias-in-healthcare-algs. 
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